体育论文中涉及的主要概念性定义,应做出此定义的界定表述,以便交流讨论,避免引起误解。数据挖掘技术主要包括哪些数据挖掘技术主要有决策树、神经网络、回归、关联规则、聚类、贝叶斯分类6中。在决策树里,所分析的数据样本先是集成为一个树根,然后经过层层分枝,最终形成若干个结点,每个结点代表一个结论。贝叶斯分类方法是非常成熟的统计学分类方法,它主要用来预测类成员间关系的可能性。

体育类论文怎么写?
(一)选题。体育论文的选题反映了研究者的信仰、知识、习惯、兴趣以及价值观念,因而应该通过自已选题,自觉地发挥主观能动性。(二)结合写作进行专题学习。通过学习,既可以继承前人已有的研究成果作为自己立论的起点,又能通过收集有关必要的资料,作为引用的论据。为此,积极地储备资料是非常有必要的。
(三)注意定义的准确性。体育论文中涉及的主要概念性定义,应做出此定义的界定表述,以便交流讨论,避免引起误解。
(四)文章从写提纲、修改提纲开始。有了好的提纲,才可能写出好的论文,提纲可以写成两级或三级标题的形式,成文后也免去大的改动。
(五)数据要准确。体育论文中希望提供量化的内容和数据,必须是准确为前提,测量与调查的原始数据尤其要准确,测试条件要规范统一。运用数量统计分折所得出的结论性效果,一定要进行体育统计学的检验。你也可以去上学吧论文查重上看看,介绍挺多的。
数据挖掘技术主要包括哪些
数据挖掘技术主要有决策树 、神经网络 、回归 、关联规则 、聚类 、贝叶斯分类6中。1、决策树技术。
决策树是一种非常成熟的、普遍采用的数据挖掘技术。在决策树里,所分析的数据样本先是集成为一个树根,然后经过层层分枝,最终形成若干个结点,每个结点代表一个结论。
2、神经网络技术。
神经网络是通过数学算法来模仿人脑思维的,它是数据挖掘中机器学习的典型代表。神经网络是人脑的抽象计算模型,数据挖掘中的“神经网络”是由大量并行分布的微处理单元组成的,它有通过调整连接强度从经验知识中进行学习的能力,并可以将这些知识进行应用。
3、回归分析技术。
回归分析包括线性回归,这里主要是指多元线性回归和逻辑斯蒂回归。其中,在数据化运营中更多使用的是逻辑斯蒂回归,它又包括响应预测、分类划分等内容。
4、关联规则技术。
关联规则是在数据库和数据挖掘领域中被发明并被广泛研究的一种重要模型,关联规则数据挖掘的主要目的是找出数据集中的频繁模式,即多次重复出现的模式和并发关系,即同时出现的关系,频繁和并发关系也称作关联。
5、聚类分析技术。
聚类分析有一个通俗的解释和比喻,那就是“物以类聚,人以群分”。针对几个特定的业务指标,可以将观察对象的群体按照相似性和相异性进行不同群组的划分。经过划分后,每个群组内部各对象间的相似度会很高,而在不同群组之间的对象彼此间将具有很高的相异度。
6、贝叶斯分类技术。
贝叶斯分类方法是非常成熟的统计学分类方法,它主要用来预测类成员间关系的可能性。比如通过一个给定观察值的相关属性来判断其属于一个特定类别的概率。贝叶斯分类方法是基于贝叶斯定理的,朴素贝叶斯分类方法作为一种简单贝叶斯分类算法甚至可以跟决策树和神经网络算法相媲美。
参考资料来源:百度百科-数据挖掘
